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Towards increased data transmission rate for a three-class metabolic brain-
computer interface based on transcranial Doppler ultrasound

Abstract

In this study, we conducted an offline analysis of transcranial Doppler (TCD) ultrasound record-

ings to investigate potential methods for increasing data transmission rate in a TCD-based brain-

computer interface. Cerebral blood flow velocity was recorded within the left and right middle

cerebral arteries while nine able-bodied participants alternated between rest and two different

mental activities (word generation and mental rotation). We differentiated these three states using

a three-class linear discriminant analysis classifier while the duration of each state was varied be-

tween 5 and 30 seconds. Maximum classification accuracies exceeded 70%, and data transmission

rate was maximized at 1.2 bits per minute, representing a four-fold increase in data transmission

rate over previous two-class analysis of TCD recordings.

Keywords: brain-computer interface, transcranial Doppler

1 Introduction

Brain-computer interfaces (BCIs) allow users to generate control signals for external devices

using only their thoughts [7]. Due to their ability to bypass typical output channels such as

movement and speech, BCIs are of interest within the field of rehabilitation engineering [29].

Specifically, BCIs can be used as an alternative means of communication in individuals

with severe physical disabilities resulting from conditions such as stroke and amyotrophic

lateral sclerosis (ALS). In extreme cases, these disabilities can result in total immobility and

inability to communicate while retaining full consciousness. This condition is referred to as

“locked-in syndrome” (LIS) [26]. The provision of a means of communication for individuals

with LIS continues to be an important goal of BCI research [8].
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Previous non-invasive BCI research has focused on a small number of measurement modali-

ties, of which the foremost has been electroencephalography (EEG) [3, 14]. Recent research

has also investigated alternative measurement modalities such as functional magnetic reso-

nance imaging (fMRI) and near-infrared spectroscopy (NIRS) [25, 32]. While EEG directly

measures neuronal activity, fMRI and NIRS measure changes in blood hemoglobin con-

centrations [15]. Consequently, BCIs using the latter modalities are often referred to as

hemodynamic or metabolic BCIs [19]. These BCIs do not generally possess the same tempo-

ral resolution as EEG BCIs, but have still attracted attention due to their intuitive training

methods and robustness against electrical artifacts [10]. Recent research in this area has

produced a number of real-time fMRI and NIRS-based BCIs [1, 4, 6, 11, 18]. These BCIs,

many of which rely upon detection of motor imagery (e.g. imagined hand movement or finger

tapping), suggest that metabolic BCIs are worthy of further study.

Another metabolic signal that may be suitable for BCI development is transcranial Doppler

ultrasound (TCD) [20]. TCD measures cerebral blood flow velocity (CBFV) within the circle

of Willis (the network of arteries that supply the brain) [30]. Cognitive activation produces

increases in CBFV within these arteries that can be detected using TCD [28]. These changes

have been observed for a wide variety of different mental tasks [31], suggesting the potential

to automatically detect mental activity on the basis of changes in CBFV. This possibility

was investigated by Myrden et al. in [20], where it was shown that two different mental

activities (word generation and mental rotation) can be differentiated from rest with greater

than 80% accuracy. However, these results were achieved using very long durations for each

activity (45 seconds), yielding a very low data transmission rate. This limits the practicality

of such a BCI. Consequently, improvement of the data transmission rate is necessary in order

to demonstrate the practical viability of a TCD-based BCI.

In BCIs, data transmission rate depends on three parameters - the number of potential
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classes (N), the classification accuracy (P), and the state duration - the length of time for

which a mental activity is performed before it is classified. The first two variables determine

the data transmission rate in bits per trial (B), which can be expressed as [22, 33]:

B = log2(N) + P log2(P ) + (1 − P ) log2

(
1 − P

N − 1

)
(1)

Using the state duration, data transmission rate can be converted to bits per second or bits

per minute. It is clear that data transmission rate can be augmented by increasing either N

or P, or by decreasing the state duration. The effects of each parameter on data transmission

rate (in bits per minute) are shown in Figure 1.

Increasing the number of classes and reducing state durations is likely to decrease clas-

sification accuracy. This limits the maximum achievable data transmission rate. In this

paper, we investigate the net gain in data transmission rate that can be attained by vary-

ing these parameters for a TCD-based BCI. We have expanded the classification problem

introduced in [20] to a three-class problem by attempting to differentiate word generation,

mental rotation, and rest from each other. Furthermore, state durations have been limited

to a range of durations between five and thirty seconds. If state durations can be substan-

tially reduced without greatly decreasing classification accuracy, data transmission rate will

be improved.

2 Materials and Methods

2.1 Participants

Nine able-bodied participants (6 female, mean age 25.6 ± 2.4 years) were recruited from

the Bloorview Research Institute. All participants were right-handed, as quantified by the
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Edinburgh Handedness Inventory [21], with a mean score of 79.4 ± 16.3. Participants had no

history of migraine and no known neurological, cardiopulmonary, or respiratory conditions.

All participants gave informed written consent. This study was approved by the Research

Ethics Boards of both Holland Bloorview Kids Rehabilitation Hospital and the University

of Toronto.

2.2 Signal Acquisition

CBFV was monitored using a Multi-Dop X4 TCD instrument (Compumedics USA). Dual 2

MHz ultrasonic transducers were fitted on the included headgear and placed over the left and

right transtemporal windows. The insonation procedure detailed by Alexandrov et al. [2] was

used to acquire CBFV signals from the left and right middle cerebral arteries (MCAs). These

arteries profuse approximately 80% of the brain and have been implicated in a wide variety

of mental tasks [31]. Probe position and measurement depth were adjusted until optimal

signals were located from each MCA at depths between 45 and 60 millimetres. Signals were

acquired from approximately the same depth for each MCA. The sampling rate was 100 Hz.

The signal acquisition process is further detailed in [20].

2.3 Experimental Protocol

Participants completed two experimental sessions. Each session consisted of a 10-minute

baseline period and two 15-minute experimental blocks. The baseline period allowed cerebral

blood flow velocity to stabilize, and date from this period were not used for analysis. During

each experimental block, participants completed ten rest states, five mental rotation states,

and five word generation states. Participants alternated between rest and one of the two

activation states until the block was completed. Each state was 45 seconds in duration.
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Participants were seated facing a monitor on which the instructions and images for each

task were displayed. During the word generation task, participants were presented with

a letter and prompted to silently generate words beginning with that letter. During the

mental rotation task, participants were presented with pairs of images of similar objects

rotated to different angles, and were prompted to mentally rotate the objects until they could

determine whether they were identical or mirror images. Further information regarding the

word generation and mental rotation tasks is given in [20].

Participants were instructed to keep their eyes open during both activation and rest, and to

perform each task as quickly as possible. Participants were also instructed to refrain from

vocalizing their answers to prevent speech-related increases in CBFV. During rest states,

participants were instructed to relax naturally.

2.4 Pre-Processing

TCD data were exported from the Multi-Dop X4, and the mean of the maximum velocity

was extracted for analysis. The raw data from each block were normalized and then filtered

using a third-order low-pass Butterworth filter with a cutoff frequency of 0.6 Hz to remove the

effects of beat-to-beat fluctuations in CBFV. The data were then segmented into rest, word

generation, and mental rotation states using markers that were automatically inserted into

the TCD recordings at the beginning of each state during the experiment. During analysis,

each of these segments was truncated to produce states of various shorter durations.

2.5 Feature Extraction

After segmentation, twelve features were extracted from each state. These included the

mean, slope, and standard deviation from both the left and right MCAs; the difference in
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means and difference in slopes between the left and right MCAs; the cross-correlation of the

signals from each MCA; and the maximum and minimum instantaneous differences in CBFV

between the left and right MCAs during each state.

2.6 Feature Selection and Classification

Classification was performed separately for state durations ranging from 5 to 30 seconds

in one-second increments. To test each state duration, a signal of length corresponding

to the state duration was extracted from the beginning of all states. Feature extraction

was then performed for the set of shortened signals. Five runs of five-fold cross-validation

were performed, with feature selection based on the training data set only. An exhaustive

feature selection algorithm was used to select optimal feature sets from the pool of twelve

features. Every possible combination of two and three features (referred to as two and

three-dimensional feature sets, respectively) was used to classify the training data. Fisher

linear discriminant analysis (LDA) was used for classification [13]. The two and three-

dimensional feature sets that produced the best performance on the training data were

then used to classify the test data, again using Fisher LDA. The reported classification

accuracies are the average of the accuracies for all three classes. All comparisons between

classification accuracies at different state durations were performed using the Wilcoxon rank-

sum test.

3 Results

The mean classification accuracy across all participants using two and three-dimensional

feature sets is displayed in Figure 2 for state durations ranging from 5 to 30 seconds. Mean

classification accuracy ranged between 40% and 69% for two-dimensional feature sets, and
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between 37% and 74% for three-dimensional feature sets. For both sets, classification ac-

curacy increased with increasing state duration, but tended to stabilize as state duration

exceeded 20 seconds. In Figure 3, these curves have been converted to reflect data trans-

mission rate using (1). Data transmission rate was maximized at 1.2 bits per minute for

20-second state durations using a three-dimensional feature set.

For both two and three-dimensional feature sets, mean classification accuracy across all

participants exceeded chance levels for state durations longer than eight seconds. For du-

rations greater than 10 seconds, classification accuracy was generally higher when using

three-dimensional feature sets. This difference in classification accuracy was statistically

significant for durations between 18 and 29 seconds (p < 0.02).

Figure 4 depicts the mean accuracy across all participants for each class at each state duration

for three-dimensional feature sets. For these sets, an accuracy exceeding 70% was first

achieved for 20-second durations. Classification accuracies for word generation and mental

rotation were significantly higher than classification accuracy for the rest class for durations

longer than 10 seconds (p < 0.05) and 14 seconds (p < 0.001), respectively. Classification

accuracy peaked for word generation at 77%, for mental rotation at 78%, and for the rest

class at 66%. This was also observed in [20] when each task was independently differentiated

from rest.

The cubic polynomial of best fit was computed for the accuracy curve for each participant.

From these curves, state durations at which several temporal milestones were achieved were

computed for each participant. These include the duration at which maximum accuracy

was achieved, the shortest duration at which classification accuracy was within 5% of the

maximum value, and the duration at which classification accuracy stabilized. The final

parameter represents the state duration for which further increases in duration yielded only

marginal gains in classification accuracy. It was defined as the state duration for which the
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magnitude of the derivative of the polynomial of best fit was less than 1% of the maximum

accuracy. All parameters were calculated for three-dimensional feature sets and can be found

in Table 1.

4 Discussion

In this study, we have shown that mean classification accuracies exceeding 70% can be

achieved for a three-class problem within 20 seconds of the onset of cognitive activity using

bilateral TCD measurements, time-domain features, and a linear classifier. This corresponds

to a maximum data transmission rate of 1.2 bits per minute, compared to a maximum

rate of 0.3 bits per minute previously reported for a TCD-based BCI [20]. This significant

improvement highlights the advantages of a three-class BCI and the importance of reducing

state duration. It is important to note that these results represent very early research into a

TCD-based BCI, and it is likely that further improvement is possible. The present study used

only the time-averaged mean of the maximum velocity due to limitations of the instrument.

However, it is possible that response time may be further reduced using frequency-domain

features extracted from the maximum velocity envelopes, if these signals are available.

Our results should be compared to those from other metabolic BCIs, particularly those

based on NIRS. Recent studies in this area have produced BCIs with data transmission

rates ranging from 0.6 to 1.3 bits per minute [5, 16, 23]. Our BCI places near the upper

end of this range, indicating that TCD is a worthwhile alternative to NIRS for metabolic

BCIs. Older work in this area has achieved data transmission rates approaching 3 bits per

minute [25], a level that may be possible for TCD when more powerful feature selection and

classification algorithms are used.

State duration has a significant effect on classification accuracy. As seen in Figure 2, clas-
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sification accuracy for a three-dimensional feature set improves from 37% for five-second

durations to approximately 50% for 10-second durations and 64% for 15-second durations.

After state duration is extended to 20 seconds, further increases in classification accuracy

are small. In previous TCD research, event-related peaks in CBFV have been observed be-

tween 4 and 20 seconds after the onset of cognitive activity [17, 24, 28]. These measurements

support our results, and may explain why state durations beyond 20 seconds provide only

marginal increases in classification accuracy.

In this study, state duration was varied by extracting a segment of appropriate length from

the beginning of a 45-second task. This was a practical necessity due to the goal of inves-

tigating a wide variety of different state durations. If state durations were limited during

data collection rather than during data processing, the results may vary slightly. Future

work should investigate the effect of using shorter state durations during data collection.

The results from this study could be used as a basis for selecting shorter state durations in

future studies.

This study was necessary to verify that three-class classification accuracies comparable to

other metabolic BCIs could be achieved in an offline analysis of TCD data from able-bodied

participants. The present findings encourage future research on the development of an online

TCD-based BCI and its application to individuals within the target population.

Although we have focused on communication and control applications, it has also been

recently proposed that BCIs may have applications for neurological rehabilitation [9, 12].

For example, it has been proposed that the usage of motor imagery BCIs could help restore

movement in individuals partially paralyzed by stroke or neurotrauma [27]. Similarly, it is

possible that a TCD-based BCI that uses the word generation task could be used to aid

rehabilitation when language areas of the brain are affected by a stroke. It may also be

possible to use TCD to provide neurofeedback to individuals with abnormal cerebral blood
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flow velocities. This could allow them to voluntarily regulate their brain activity to aid

recovery.
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Fig. 1: (a) Effects of classification accuracy and number of classes on data transmission rate
for a 30-second state duration. (b) Effects of state duration and number of classes on
data transmission rate for 100% classification accuracy.

Fig. 2: Mean classification accuracy across all participants for durations ranging from five to
thirty seconds. Both the raw results and the polynomial of best fit are shown for two
and three-dimensional feature sets. Classification using three-dimensional sets was
significantly more accurate for durations between 18 and 29 seconds.

Fig. 3: Data transmission rate for state durations between 5 and 30 seconds. The maximum
attained data transmission rate is 1.2 bits per minute for 20-second durations using
a three-dimensional feature set.

Tab. 1: State duration and classification accuracy for each participant when maximum ac-
curacy, near-maximum accuracy (within 5%), and stabilization occurred. Values
computed for three-dimensional feature sets and cubic polynomials of best fit to the
accuracy curves. Standard deviations are given in brackets.

Maximum Accuracy Within 5% of Max Stabilization
Participant Time (s) Accuracy (%) Time (s) Accuracy(%) Time(s) Accuracy(%)

1 26 74.3 18 70.4 21 73.0
2 19 84.5 14 80.7 20 84.3
3 30 73.3 22 68.6 26 72.2
4 24 90.5 18 86.3 21 89.5
5 30 43.6 19 38.7 26 42.4
6 26 86.3 22 82.1 25 86.1
7 26 53.8 19 49.3 24 53.5
8 19 69.9 13 65.2 20 69.8
9 24 81.9 18 77.3 21 80.7

Mean 24.9 (4.0) 73.1 (15.6) 18.1 (3.1) 68.7 (15.8) 22.7 (2.5) 72.4 (15.6)

15



Fig. 4: Mean classification accuracy for each class across all participants for three-
dimensional feature sets. Cubic polynomials of best fit are presented for word gen-
eration (full line) and mental rotation (dashed line), and the line of best fit for rest
(dotted line).
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